
Inheritance
The Pinnacle Idea of JAVA

P

https://mail.google.com/mail/u/2/?ui=2&ik=3b917026bf&view=att&th=1532c3f586fa8581&attid=0.1&disp=safe&zw
https://mail.google.com/mail/u/2/?ui=2&ik=3b917026bf&view=att&th=1532c3f586fa8581&attid=0.1&disp=safe&zw

Super Smash Brothers!!!

Which Smash Bros character are you?

http://www.playbuzz.com/hannahnoellegault10/which-super-sm
ash-bros-character-are-you

http://goo.gl/7zE6X4

http://www.playbuzz.com/hannahnoellegault10/which-super-smash-bros-character-are-you
http://www.playbuzz.com/hannahnoellegault10/which-super-smash-bros-character-are-you
http://www.playbuzz.com/hannahnoellegault10/which-super-smash-bros-character-are-you

What are some sub-categories of characters?

What are some sub-categories of characters?

● Speed
● Power
● Technique
● Tricky
● Defense
● All-Around

Somebody Actually Wrote THIS:

Super Class

Super Class

Smash Brothers Characters

 Speed Chars
Technique Chars

 Tricky Chars

Sonic Pikachu Kirby Rosalina Jigglypuff Villager

Smash Brothers Characters
● getX(), getY() //find them
● moveX(), moveY() //move
● attack()

 Speed Chars
● moveFast() Technique Chars

● finesse()

 Tricky Chars
● surprise()

Sonic
CrazyBall() Pikachu

Dash()
Kirby
SwallowUp()

Rosalina
Aerial()

Jigglypuff
Sleep()

Villager
Umbrella()

How do we use this in Java? extends

public class SmashChar() {
 public int getX() { //code }
 public int getY() { }
 public void moveX(int x1) { }
 public void moveY(int y1) { }
 public void attack () { }
}

public class SpeedChar() extends SmashChar {
 public void speedUp() { }
}

public class Sonic() extends SpeedChar {
 public void crazyBall() { }
}

Sonic is a subclass of SmashChar - he can use its methods

public class SmashChar() {
 public int getX() { //code }
 public int getY() { }
 public void moveX(int x1) { }
 public void moveY(int y1) { }
 public void attack () { }
}

public class SpeedChar() extends SmashChar
{
 public void speedUp() { }
}

public class Sonic() extends SpeedChar
 {
 public void SpeedBall() { }
}

Sonic hedgeHog = new Sonic();
hedgeHog.SpeedBall();
hedgeHog.SpeedUp();
hedgeHog.getX();
hedgeHog.getY();
hedgeHog.moveX(3);
hedgeHog.moveY(7);
hedgeHog.attack();

We can also extend instance variables.

public class SmashChar() {
//This is the super class
 private String name;
 private int health;
 public SmashChar(String n, int h){
 name = n;
 health = h;
 }
}

public class Sonic() extends SmashChar {
 private String color;
 public Sonic(String c, String n, int h) {
 color = c;
 super (n,h);
 }

}

What will be printed?
public class SmashChar() {
//This is the super class
 private String name;
 private int health;
 public SmashChar(String n, int h){
 name = n;
 health = h;
 }
 //gets and sets
}

public class Sonic() extends SmashChar {
 private String color;
 public Sonic(String c, String n, int h) {
 color = c;
 super (n,h);
 }
}

Sonic hedgeHog = new Sonic(“blue”, “Sonny”,9);
out.print (hedgeHog.getColor());
out.print(hedgeHog.getName());
out.print(hedgeHog.getHealth());

AP QUESTION
public class SmashChar() {
//This is the super class
 private String name;
 private int health;
 public SmashChar(String name){
 name = n;
 health = 100;
 }
 //gets and sets
}

public class JigglyPuff() extends SmashChar {
 public JigglyPuff() {
 super (“Jiggle”));
 }
}

JigglyPuff pinky = new JigglyPuff();
out.print(pinky.getName());
out.print(pinky.getHealth());

Side Topic - Multiple Constructors
public class SmashChar() {
 private String name;
 private int health;
 public SmashChar(){
 name = “SuperSmash!”;
 health = 10;
 }
 public SmashChar(String n, int h){
 name = n;
 health = h;
 }
}public class JigglyPuff() extends SmashChar {
 public JigglyPuff() {
 super () ;
 }
 public JigglyPuff(String n, int h) {
 super (n, h) ;
 }
}

JigglyPuff pinky = new JigglyPuff();
out.print(pinky.getName());
out.print(pinky.getHealth());

JigglyPuff cute = new JigglyPuff(“JP”, 9);
out.print(cute.getName());
out.print(cute.getHealth());

Weird Topic - Needing to Cast
public class SmashChar() {
 private String name;
 private int health;
 public SmashChar(){
 name = “SuperSmash!”;
 health = 10;
 }
 public SmashChar(String n, int h){
 name = n;
 health = h;
 }
}public class JigglyPuff() extends SmashChar {
 public JigglyPuff() {
 super () ;
 }
 public String giggle() {
 return “Giggle!”;
 }
}

SmashChar pinky = new JigglyPuff();
out.print(pinky.getName()); OK
out.print(pinky.getHealth()); OK
out.print(pinky.giggle()); NOT OK!!!!

out.print((JigglyPuff)pinky.giggle());
CASTING MAKES IT OK

Last Concept: Method Override

When you extend a class, you inherit all methods and instance
variables.

You can override the original methods by implementing one
with the same signature.

A signature is the method header like:
 public int moveX(int change)

Example: Sonic’s Speed
public class SpeedChar() extends SmashChar {
 public void speedUp() {
 speed += 20;
 }
}

public class Sonic() extends SpeedChar {
 public void speedUp() {
 speed += 30;
 speedBall(); }
}

Sonic’s speedUp()
overrides the
standard speedUp()
for SpeedChars.

He gets 30 points
instead of 20 AND
calls his special
SpeedBall() method.

Example: Sonic’s Speed
public class SpeedChar() extends SmashChar {
 public void speedUp() {
 speed += 20;
 }
 public String cheer() {
 return “Yay Smash!”
}

public class Sonic() extends SpeedChar {
 public void speedUp() {
 speed += 30;
 speedBall(); }
}

SmashChar hedgeHog = new
Sonic();
hedgeHog.speedUp();
 //this will call the “lowest”
 //version of speedUp() in Sonic
 //and stop there
 //Sonic’s speedUP() overrides
 //that of SpeedChar

hedgeHog.cheer();
 //this will look in Sonic first
 //but he has no cheer()
 //so it will look “upward”
 //to find the first cheer()

More Inheritance!

Inheritance diagram: “is a”

● CoffeeCup is a Cup
○ Cup is CoffeeCup’s “Parent” class
○ CoffeeCup is Cup’s “Child” class

● TeaCup and Coffee Cup are “siblings”
● Name another parent?
● Name another child?
● Name other sblings?

Drawings to explain Worksheet 2, #1

int x;

constructor G // set x to 3

setX(int val) //set x to val

toString //return x

one

G one = new G();
out.println(one);
one.setX(5);
out.println(one);

3

5

int y;

constructor H // set y to 4

setY(int val) //set y to val

toString //return y + super.toString()

G - SUPER CLASS H - SUB CLASS extends G

H two = new H();
two.setX(-2)
two.setY(11);
out.println(two); 11 -2

two

Drawings to explain Worksheet 2, #2

int x;

constructor G // set x to 3

setX(int val) //set x to val

toString //return x

three

G three = new H();
out.println(three);
three.setX(8);
three.setY(21);
out.println(three);

The answer is
“ERROR”

Which line causes it?

int y;

constructor H // set y to 4

setY(int val) //set y to val

toString //return y + super.toString()

G - SUPER CLASS H - SUB CLASS extends G

OVERRIDE

Drawings to explain Worksheet 2, #3

int x;

constructor G // set x to 3

setX(int val) //set x to val

toString //return x

four

G four = new H();
four.setX(11);
out.println(four);
four.setX(6);
((H)four).setY(14);
out.println(four);

4 11

14 6

int y;

constructor H // set y to 4

setY(int val) //set y to val

toString //return y + super.toString()

G - SUPER CLASS H - SUB CLASS extends G

Why didn’t we just start as an H in the first place?

String name;

constructor //set name

setName // set to new name

attack // say “Boo”

toString //return name

player1

SmashBro player1 = new Villager();
player1.setName(“Beyonce”);
((Villager)player1).setGender(“Female”);
player1.attack() //What will this do?
out.print(player1); //What will this print?

String gender;

constructor // set gender

setGender //Set the gender

attack // swing umbrella

toString //return gender + super.toString()

SmashBro

Villager extends SmashBro

OVERRIDE

OVERRIDE

So the player can change personas!

String name;

constructor //set name

setName // set to new name

attack // say “Boo”

toString //return name

player1

SmashBro player1 = new Charizard();
player1.setName(“Beyonce”);
((Charizard)player1).setColor(“Red”);
player1.attack() //What will this do?
out.print(player1); //What will this print?

String color;

constructor // set color

setGender //Set the color

attack // breathe fire

toString //return color + super.toString()

SmashBro

Charizard extends SmashBro

OVERRIDE

OVERRIDE

Drawings to explain Worksheet 2, #4

int x;

constructor G // set x to 3

setX(int val) //set x to val

toString //return x

H five = new H();
five.setY(7);
out.println(five);
five.setX(16);
five.setY(9);
out.println(five);

7 3

9 16

int y;

constructor H // set y to 4

setY(int val) //set y to val

toString //return y + super.toString();

G - SUPER CLASS H - SUB CLASS extends G

five

Warmup: SUPER TRICK AP QUESTION: Override

1) Athlete
2)

3) liftWeights()
4)

For each method call, write the output or “error”

1) Athlete ben = new Athlete();
ben.talk();
ben.kick();

 2) SoccerPlayer sam = new SoccerPlayer();
sam.talk();
sam.kick();

3) Athlete poppy = new SoccerPlayer();
poppy.talk();
poppy.kick();

Athlete
public void talk()
 {s.o.p(“Working Out!”); }

Swimmer
Extends Athlete

public void talk()
 {s.o.p. (“200 laps!”);}
public void dive()
{s.o.p. (“Splash!”);}

SoccerPlayer
Extends Athlete

public void kick()
 {s.o.p. (“Goal!”);}

Warmup: SUPER TRICK AP QUESTION: Override

1) Athlete
2)

3) liftWeights()
4)

For each method call, write the output or “error”

1) Athlete ben = new Athlete();
ben.talk(); would say Working Out! except...
ben.kick(); ERROR! Athletes can’t kick

 2) SoccerPlayer sam = new SoccerPlayer();
sam.talk(); Working Out!
sam.kick(); Goal!

3) Athlete poppy = new SoccerPlayer();
poppy.talk(); Working Out!
poppy.kick(); ERROR! There’s no override

Athlete
public void talk()
 {s.o.p(“Working Out!”); }

Swimmer
Extends Athlete

public void talk()
 {s.o.p. (“200 laps!”);}
public void dive()
{s.o.p. (“Splash!”);}

SoccerPlayer
Extends Athlete

public void kick()
 {s.o.p. (“Goal!”);}

SUPER TRICK AP QUESTION: Override
1) Athlete

2)
3) liftWeights()

4)

For each method call, write the output or “error”

4) Swimmer emma = new Swimmer();
emma.talk();
emma.dive();

 5) Athlete zuzu = new Swimmer ();
zuzu.dive();

6) Athlete lola = new Swimmer();
 lola.talk();

Athlete
public void talk()
 {s.o.p(“Working Out!”); }

Swimmer
Extends Athlete

public void talk()
 {s.o.p. (“200 laps!”);}
public void dive()
{s.o.p. (“Splash!”);}

SoccerPlayer
Extends Athlete

public void kick()
 {s.o.p. (“Goal!”);}

SUPER TRICK AP QUESTION: Override
1) Athlete

2)
3) liftWeights()

4)

For each method call, write the output or “error”

4) Swimmer emma = new Swimmer();
emma.talk(); 200 laps!
emma.dive(); Splash!

 5) Athlete zuzu = new Swimmer ();
zuzu.dive(); Error! Dive has no override

6) Athlete lola = new Swimmer();
 lola.talk(); 200 laps! //override

Athlete
public void talk()
 {s.o.p(“Working Out!”); }

Swimmer
Extends Athlete

public void talk()
 {s.o.p. (“200 laps!”);}
public void dive()
{s.o.p. (“Splash!”);}

SoccerPlayer
Extends Athlete

public void kick()
 {s.o.p. (“Goal!”);}

Methods: Override vs Overload

Override Example
What is the output?

Overload example. What is output?
1) bark() 2) bark(5)

Great Visual!

Warm-Up: Interface vs Inheritance?

Interface and Inheritance are both important parts of
Polymorphism - they allow different types to use the
same method calls to standardize behavior.

When might we choose one or the other?

Which one is interface: contract with abstract methods?
Which is inheritance: super class w/ concrete methods?

You go to Cal and you’re being forced
to collaborate with Stanford students
on an animal game. Stanford is
making a bird, and you are making a
bear. They should both eat(), sleep(),
and talk(). You don’t want the
Stanford students to see your
awesome code and steal it.

You’re working on an animal video
game with your best buddies. You’re
each in charge of one animal. You
agree that all of the animals should
have these methods: eat(), sleep(),
talk()

Warm-Up: Coding Bat

Class Animals
eat() {o.p.(”Yum!”) }
sleep() {o.p.(”zzzzz”) }
talk() {o.p.(”Noise!”) }

class Tiger
talk() {o.p.(“roar!”);}

class Koala
talk() {o.p.(“yawn!”);}

ss

Tiger and Koala extend Animal. They can use
the super classmethods to eat and sleep. We
are overriding talk() to be more specific.

Buddies use INHERITANCE - we can agree on
and share the same super code.

Interface Animals
eat()
sleep()
talk()

class Cardinal
eat() {o.p.(“seed!”);}
sleep() {o.p.(“zz”);}
talk() {o.p.(“peep”);}

class Bear
eat() {o.p.(“meat!”);}
sleep() {o.p.(“zz”);}
talk() {o.p.(“grrrr”);}

Cardinal and Bear implement Animal. They
need their OWN concrete methods to match
the abstract method signatures.

Cal v Stanford uses an interface - we can agree
on methods but don’t need to share code. This
is ENCAPSULATION.

Methods: Override vs Overload

Override:
Used in inheritance.
A sub class can use
the same method
signature as a parent
class method.

Overload:
A class can use the
same method name
with different
parameters. lists
example:
remove(Object obj);
remove(int i);

