Inheritance
The Pinnacle Idea of JAVA

told you
lately
how much
I love
your

perfectly
indented

code

inside every
set of braces?

https://mail.google.com/mail/u/2/?ui=2&ik=3b917026bf&view=att&th=1532c3f586fa8581&attid=0.1&disp=safe&zw
https://mail.google.com/mail/u/2/?ui=2&ik=3b917026bf&view=att&th=1532c3f586fa8581&attid=0.1&disp=safe&zw

Super Smash Brothers!!!

Which Smash Bros character are you?

http://www.playbuzz.com/hannahnoellegault10/which-super-sm
ash-bros-character-are-you

http://goo.gl/7zE6X4

http://www.playbuzz.com/hannahnoellegault10/which-super-smash-bros-character-are-you
http://www.playbuzz.com/hannahnoellegault10/which-super-smash-bros-character-are-you
http://www.playbuzz.com/hannahnoellegault10/which-super-smash-bros-character-are-you

What are some sub-categories of characters?

SH BR‘ '

What are some sub-categories of characters?

Speed
Power
Technique
Tricky
Defense
All-Around

Somebody Actually Wrote THIS

The rest of the all-around types are: 9’ g} \' W 3 e’ w and

Next, Power types. These characters trade movement speed and multi-hitting and fast attacks for more weight and power.
£

For example, =

He has massive attack, but little movement speed (but much better in SSB4 then Brawl and Melee) or attack speed.

Generally, these characters are blg, so they have good range too.

/ g _m-, £
Vg ¥ X
The rest are: V N and W

Now, there are speed types. They are generally the nothing like power types. They overwhelm with fast movement and fast attacks
with multi-hitters, generally with dashing specials and good recovery. They have little weight and power.

- A) \ WM [e -
They are: '@ ,1!!- ; ,i',@’, ,‘,'%?', v ,o’.}, o ,“,ande).

Now is Technique. They have special things that help them.
AA — .
Theyare:o.";, AN ,Q,Q,Q,ande,

Now there is Defence. They have a non-offence flow, with awesome recovery most of the time. Like Mario Power Tennis, there are
vary few.

They are: é ,* X I?{ ,and =

Now is Tricky. It's hard to know what they're up to and you never know what's next. Or they make sure the match is played their
way, even as CPUs. Ether they K.O. out of nowhere, you can't reach them no matter how hard you try, or they keep you close so you
can't use projectiles easily.These should be called the & s.

These characters are ’ 5 w ; ‘e .'ﬂ* and o0

Super Class

Super Class

/

Speed Chars

J

Smash Brothers Characters

Sonic

. &
: A
‘Qﬂﬁ E
| &

Pikachu

/
S
A
@

J

Technique Chars

J

J

Kirby

0o

Rosalina

3}‘:.
£ &

N\

Tricky Chars

J

J

Jigglypuff

4
[2R

Villager

fegaV
2 ¢

W

[

/

Speed Chars
e moveFast()

ll J

Smash Brothers Characters
e getX(), getY() //find them
e moveX(), moveY() //move

e attack()

J

Technigue Chars
o finesse()

J

N\

Tricky Chars
e surprise()

J

Sonic)

S Pikachu

CrazyBall() W
\ ég gé%‘)’%)

Kirby
SwallowUp()

‘IR

[W

Rosalina

Aerial()

2
/

&

Jigglypuff
Sleep()

Villager
Umbrella()

TR
27 Y

w =

-

How do we use this in Java? extends

public class SmashChar() { public class SpeedChar() extends SmashChar {
public int getX() { //code } public void speedUp() { }
publicint getY() {} }

public void moveX(int x1) {}
public void moveY(intyl1) {}

public void attack () {}

public class Sonic() extends SpeedChar {

public void crazyBall() { }
}

Sonic is a subclass of SmashChar - he can use its methods

public class SmashChar() {

public int getX() { //code }
publicint getY(){}

public void moveX(int x1) {}
public void moveY(intyl) { }
public void attack () { }

public class SpeedChar() extends SmashChar

{
}

public void speedUp() { }

public class Sonic() extends SpeedChar

{
}

public void SpeedBall() { }

Sonic hedgeHog = new Sonic();
hedgeHog.SpeedBall();
hedgeHog.SpeedUp();
hedgeHog.getX();
hedgeHog.getY();
hedgeHog.moveX(3);
hedgeHog.moveY(7);
hedgeHog.attack();

We can also extend instance variables.

public class SmashChar() {
//This is the super class public class Sonic() extends SmashChar {
private String name; private String color;
private int health; public Sonic(String ¢, String n, int h) {
public SmashChar(String n, int h){ color =¢;
name =n; super (n,h);
health = h; }
}
} }

What will be printed?

public class SmashChar() {
[/ This is the super class
private String name;
private int health;
public SmashChar(String n, int h){
name = n;
health = h;
}
//gets and sets
}

Sonic hedgeHog = new Sonic(“blue”, “ ”.9);
out.print (hedgeHog.getColor());
out.print(hedgeHog.getName());
out.print(hedgeHog.getHealth());

public class Sonic() extends SmashChar {
private String color;
public Sonic(String c, String n, int h) {
color =c;
super (n,h);
}
}

AP QUESTION

public class SmashChar() {
[/ This is the super class
private String name;
private int health;
public SmashChar(String)
name = n;
health =100;
}
//gets and sets
}

JigglyPuff pinky = new JigglyPuff();
out.print(pinky.getName());
out.print(pinky.getHealth());

public class JigglyPuff() extends SmashChar {

public JigglyPuff() {
super (”))s
}
}

Side Topic - Multiple Constructors

public class SmashChar() {

private String name;

private int health; JigglyPuff pinky = new JigglyPuff();
public SmashChar(){ out.print(pinky.getName());
name = “SuperSmash!”; . .
health = 10; out.print(pinky.getHealth());
}
public SmashChar(String n, int h){ JlgglyPUff cute = new JlgglyPUff(“JP”, 9),
name = n; .)
health = h; out.print(cute.getName());
} out.print(cute.getHealth());

Lublic class JigglyPuff() extends SmashChar {
public JigglyPuff() {
super () ;
}
public JigglyPuff(String n,inth) {

super (n, h) ;

}

| }

Weird Topic - Needing to Cast

public class SmashChar() {

private String name;

private int health; SmashChar pinky = new JigglyPuff();
public SmashChar({ out.print(pinky.getName()); OK

health = f;persmasm ’ out.print(pinky.getHealth()); OK
} out.print(pinky.giggle()); NOT OK!!!!
public SmashChar(String n, int h){

::::f;:",i; out.print((JigglyPuff)pinky.giggle());
} CASTING MAKES IT OK

Lublic class JigglyPuff() extends SmashChar {
public JigglyPuff() {
super () ;
}
public String giggle() {

return “Giggle!”;

}

| }

Last Concept: Method Override

When you extend a class, you inherit all methods and instance
variables.

You can override the original methods by implementing one
with the same signature.

A signature is the method header like:
public int moveX(int change)

Example: Sonic's Speed Sonic’s speedUp()

overrides the

public class SpeedChar() extends SmashChar {
standard speedUp()

public void speedUp() {

speed += 20; for SpeedChars.
} } He gets 30 points
instead of 20 AND
)] calls his special
public f:lass.Sonlc() extends SpeedChar { SpeedBall() method.
public void speedUp() {
speed += 30;

speedBall(); }

Example: Sonic’s Speed

public class SpeedChar() extends SmashChar {
public void speedUp() {
speed += 20;
}
public String cheer() {
return “Yay Smash!”

}

public class Sonic() extends SpeedChar {
public void speedUp() {
speed += 30;
speedBall(); }

SmashChar hedgeHog = new
Sonic();
hedgeHog.speedUp();
/Ithis will call the “lowest”
llversion of speedUp() in Sonic
/land stop there
I/Sonic’s speedUP() overrides
//that of SpeedChar

hedgeHog.cheer();
/Ithis will look in Sonic first
//but he has no cheer()
IIso it will look “upward”
IIto find the first cheer()

More Inheritance!

Inheritance diagram:

CoffeeCupis a Cup

o Cupis CoffeeCup’s “Parent” class
o CoffeeCup is Cup’s “Child” class

TeaCup and Coffee Cup are “siblings”
Name another parent?

Name another child?

Name other sblings?

1
IS a
2 Cup -
Cis-a bA-a -
_.-"_z'..s*—cz
CoffeeCup TeaCup
is-a;
" is-a is-a.
CoffeeMug EspressoCup

Drawings to explain Worksheet 2, #1

G - SUPER CLASS H - SUB CLASS extends G
int x; inty;
constructor G // set x to 3 e | cONstructor H// setyto 4
ONE

setX(int val) //set x to val setY(int val) //set y to val ' two
toString //return x toString //return y + super.toString()

. G one = new G(); ' H two = new H();

. out.printin(one); 3 - two.setX(-2)

- one.setX(5); . two.setY(11);

out.printin(one); 5 out.printin(two); 11 -2

Drawings to explain Worksheet 2, #2

H - SUB CLASS extends G

inty;
constructor H // sety to 4

setY(int val) //set y to val

toString //return x _’_I»toString /Ireturn y + super.toString()

G - SUPER CLASS
int Xx;
constructor G // set x to 3 C—
three
setX(int val) //set x to val
OVERRIDE

. G three = new H(); The answer is
~out.printin(three); . “‘ERROR”
- three.setX(8);
- three.setY(21); . Which line causes it?

. out.printin(three);

Drawings to explain Worksheet 2, #3

G - SUPER CLASS H - SUB CLASS extends G
int x; inty;
constructor G // set x to 3 e | cONstructor H // sety to 4
four e
setX(int val) //set x to val setY(int val) //set y to val
toString //return x _’_I»toString /Ireturn y + super.toString()

. G four = new H();

- four.setX(11); , :

- out.printin(four); 41
- four.setX(6); : :

. ((H)four).setY(14); _ :

. out.printin(four); 14 6

Why didn’t we just start as an H in the first place?

Villager extends SmashBro

SmashBro
_ String gender;
String name;
constructor // set gender
constructor //set name C—

| 1
player| == setGender //Set the gender

setName // set to new name
OVERRIDE attack // swing umbrella

attack // say “Boo”
_ OVERRIDE toString //return gender + super.toString()
toString //return name

. SmashBro player1 = new Villager();

. player1.setName(“Beyonce”);

. ((Villager)player1).setGender(“Female”);
. player1.attack() //What will this do?

- out.print(player1); //What will this print?

So the player can change personas! -

Charizard extends SmashBro

SmashBro
_ String color;
String name;
constructor // set color
constructor //set name C—

I 1
player| e setGender //Set the color

setName // set to new name
OVERRJDE attack // breathe fire

attack // say “Boo”
OVERRIDE toString //return color + super.toString()
toString //return name

. SmashBro player1 = new Charizard();

. player1.setName(“Beyonce”);

. ((Charizard)player1).setColor(“Red”);

. player1.attack() //What will this do?

- out.print(player1); //What will this print?

Drawings to explain Worksheet 2, #4

G - SUPER CLASS

H - SUB CLASS extends G

int Xx;
constructor G // set xto 3
setX(int val) //set x to val

toString //return x

inty;
constructor H // sety to 4
setY(int val) //set y to val

toString //return y + super.toString();

. H five = new H();

. five.setY(7); ; :
- out.printin(five); . 73

. five.setX(16); : :

: five.setY(9); : :

. out.printin(five); .9 16

Warmup: SUPER TRICK AP QUESTION: Override

Athlete
public void talk()

4) {s.o.p(“Working Out!”); }

7

L)

Swimmer
Extends Athlete

public void talk()
{s.o.p. (“200 laps!”);}

public void dive()

{s.o.p. (“Splash!”);}

SoccerPlayer
Extends Athlete

public void kick()
{s.o.p. (“Goal!”);}

For each method call, write the output or “error”

1) Athlete ben =new Athlete();
ben.talk();
ben.kick();

2) SoccerPlayer sam =new SoccerPlayer();
sam.talk();
sam.kick();

3) Athlete poppy =new SoccerPlayer();

poppy.talk();
poppy.kick();

Warmup: SUPER TRICK AP QUESTION: Override

Athlete
public void talk()

4) {s.o.p(“Working Out!”); }

7

L)

Swimmer
Extends Athlete

public void talk()
{s.o.p. (“200 laps!”);}

public void dive()

{s.o.p. (“Splash!”);}

SoccerPlayer
Extends Athlete

public void kick()
{s.o.p. (“Goal!”);}

For each method call, write the output or “error”

1) Athlete ben =new Athlete();
ben.talk(); would say Working Out! except...
ben.kick(); ERROR! Athletes can’t kick

2) SoccerPlayer sam =new SoccerPlayer();
sam.talk(); Working Out!
sam.kick(); Goal!

3) Athlete poppy =new SoccerPlayer();
poppy.talk(); Working Out!
poppy.kick(); ERROR! There’s no override

SUPER TRICK AP QUESTION: Override

For each method call, write the output or “error”
Athlete

public void talk() 4) Swimmer emma = new Swimmer();
4) {s.o.p(“Working Out!”); } emma.talk();

emma.dive();

J 2

5) Athlete zuzu =new Swimmer ();

zuzu.dive();

Swimmer SoccerPlayer
Extends Athlete Extends Athlete
o dtalk() 6) Athlete lola = new Swimmer();
public void ta public void kick() .
{5.0.p. (200 laps!”);} s.0.p. (“Goall”):} lola.talk();

public void dive()
{s.o.p. (“Splash!”);}

SUPER TRICK AP QUESTION: Override

For each method call, write the output or “error”
Athlete

public void talk() 4) Swimmer emma = new Swimmer();
4) {s.0.p(“Working Out!”); } emma.talk(); 200 laps!

emma.dive(); Splash!

J 2

5) Athlete zuzu =new Swimmer ();

zuzu.dive(); Error! Dive has no override

Swimmer SoccerPlayer
Extends Athlete Extends Athlete
blic void talk() 6) Athlete lola = new Swimmer();
public void ta public void kick() . 1 i
s.0.p. (“200 laps!”):} ts0p. (“Goall”):} lola.talk(); 200 laps! //override

public void dive()
{s.o.p. (“Splash!”);}

Methods: Override vs Overload

Overriding

class Dog{

public void {

System.out.println("woof ");

} Saome Method Name,
} Same parameter
class Hound extends Dog{

public void sniff(){
System.out.prip€fln("sniff ");

System.out.println("bowl");

Overloading
class Dog{

gezaressihiers
System.out.pt "woof—");

} Same Method Name,
Different Parameter

//overloading method
public void
for(int i=0; i<num; i++)
System.out.println("woof ");

class Dog{
public void bark(){

Override Exam ple System.out.println("woof ");
}

. }
?
What is the output? class Hound extends Dog{

public void sniff()({
System.out.println("sniff ");

r

}

public void bark(){
System.out.println("bowl");
}
}

public class OverridingTest{
public static void main(String [] args){
Dog dog = new Hound();
dog.bark();

Overload example. What is output?
1) bark() 2) bark(s)

class Dog{
public void bark(){
System.out.println("woof ");

}

//overloading method
public void bark(int num) {
for(int i=0; i<num; i++)
System.out.println("woof ");

Great Visual!

W

Owerloading Crhverriding

Warm-Up: Interface vs Inheritance?

Interface and Inheritance are both important parts of
Polymorphism - they allow different types to use the
same method calls to standardize behavior.

When might we choose one or the other?

Which one is interface: contract with abstract methods?
Which is inheritance: super class w/ concrete methods?

You’re working on an animal video
game with your best buddies. You’re
each in charge of one animal. You
agree that all of the animals should

have these methods: eat(), sleep(),
talk()

You go to Cal and you’re being forced
to collaborate with Stanford students
on an animal game. Stanford is
making a bird, and you are making a
bear. They should both eat(), sleep(),
and talk(). You don’t want the
Stanford students to see your
awesome code and steal it.

Warm-Up: Coding Bat

String-3 > withoutString

prev | next | chance

Given two strings, base and remove, return a version of the base string where all instances of the
remove string have been removed (not case sensitive). You may assume that the remove string is length

1 or more. Remove only non-overlapping instances, so with "xxx" removing "xx" leaves "x".

withoutString("Hello there", "llo") — "He there"
withoutString("Hello there"”, "e") — "Hllo thr"

withoutString("Hello there", "x") — "Hello there"

Cal v Stanford uses an interface - we can agree
on methods but don’t need to share code. This
is ENCAPSULATION.

Buddies use INHERITANCE - we can agree on
and share the same super code.

Class Animals Interface Animals
eat() {0.p.(”Yum!”) } eat()
sleep() {o0.p.(’zzzzz") } sleep()
talk() {o.p.("Noise!”) } A1k N\
ﬂ ﬂ class Cardinal class Bear
class Tiger class Koala eat() {o.p.("seed!”);} eat() {o0.p.(“meat!”);}

talk() {o.p.(“roar!”);} | | talk() {o.p.(“yawn!”);} sleep() {0.p.(“zz”);} sleep() {0.p.(“22”):}

talk() {o.p.("peep”)i} | | talk() {o.p.(“grrrr”);}
roa

Cardinal and Bear implement Animal. They
need their OWN concrete methods to match
the abstract method signatures.

Tiger and Koala extend Animal. They can use
the super classmethods to eat and sleep. We
are overriding talk() to be more specific.

Methods: Override vs Overload

Override: Overload:

Used in inheritance. A class can use the

A sub class can use same method name

the same method with different

signature as a parent parameters. lists

class method. example:
remove(Object obj);

remove(int i);

