Important Contest Instructions!!

Please read the following instructions carefully. They contain important information on how to run your programs and submit
your solutions to the judges. If you have any questions regarding these instructions, please ask a volunteer before the start of the
competition.

Program Input
Most programs will require input. You have two options:

1) Your program may read the input from a file. The input data will be in the local directory in the file
probXX.txt, where ‘XX’ is the problem number.

2) Your program may read the input from the keyboard (standard in). You may type everything on the keyboard,
or you may copy the data from probXX.txt into the standard in. Tip: Type ‘Ctrl-Z <return>’ to signal the end
of keyboard input.

Note: An easy way to enter keyboard data is by redirecting the contents of a file to your program. For
example, if you are executing prob01, the input file probO1.txt can be redirected to the standard in of your
program using syntax like this (examples are shown for each of the allowed languages):
%> java prob01 < probO1.txt
%> java —jar js.jar prob01.js < probO1.txt
%> python prob0O1.py3 < probO1.txt
%> probOl.exe < probO1.txt
Your program will behave exactly as if you were typing the input at the keyboard.
Program Output

All programs must send their output to the screen (standard out, the default for any print statement).

Submitting your Programs

Interpreted Programs (Java, JavaScript, Python) Your program must be named probXX.java / probXXjs /
probXX.py2 / probXX.py3, where ‘XX’ corresponds to the problem number. For Python, use the extension that
matches the Python version you are using. Please submit only the source (java, .js, .py2 or .py3). For java, the
main class must be named probXX. Nofte there is no capitalization. All main and supporting classes should be
in the default (or anonymous) package.

Native Programs (C, C++, etc.) Your program should be named probXX.exe, where ‘XX’ corresponds to the
problem number.

You are strongly encouraged to submit solutions for Problems #0 and #1 (see next pages) prior to
the start of the competition to ensure that your build environment is compatible with the judges’

and that you understand the Input and Output methods required.

ZTUN ¢ Bl Welcome! [1point]

Teams are strongly encouraged to submit this problem prior to the start of the competition - hey, it's basically a free

} NOTE - this is the 1*' of two problems that can be solved and submitted before the start of the CodeWars competition.
point!

Summary

The sole purpose of this problem is o allow each team to submit a test program to
ensure the programs generated by their computer can be judged by our judging
system. Your task for this program is a variation on the classic “Hello World!”
program by saying hello to our newest CodeWars site — Conway, Arkansas. All you
have to do is print “Arkansas, The Natural State!” to the screen.

Output
Arkansas, The Natural State!

Problem *J Greetings [1point]

competition. Teams are strongly encouraged to submit this problem prior to the start of the competition — hey, it’s

} NOTE - this is the 2" of two problems that can be solved and submitted before the start of the CodeWars
basically a free point!

Summary

You'll have no chance to win at CodeWars (or life) if you don’t know how to do Input and Output properly. You also won’t do well
at CodeWars if you are rude to your judges.

Write a program to greet your esteemed judges appropriately. Read in the name of a judge and output your greeting in the
appropriate format.

If you're confused at this point, go back and re-read your contest instructions.

Input
The input will be your judge’s first name, a single word with no spaces:

Wilfred

Output

Welcome your judge with a friendly, creative greeting of some sort that includes the judge’s name (does not have to match the
below example):

Greetings, O Honorable Wilfred the Magnificent! May I kiss your signet ring?

Problem 2

Running Out of Water

[2 points]

Summary

A small town in the California desert, Dry Gulch, has an underground water storage tank that contains 10,000 gallons of water.
Thankfully (given that it’'s another drought season), the tank has not been discovered by any nearby golf courses, water parks, or
mineral water companies, and is still dedicated for use only by the residents of Dry Gulch.

Given a weekly usage rate for the town residents, calculate the number of weeks the water will last.

Input
The input will consist of different weekly water usage rates ending with a zero.

1750
1000
4325
0

Output

For each line of input calculate the total number of full weeks that the water supply
will last and print the output as follows.

1750 gallons per week will last 5 weeks
1000 gallons per week will last 10 weeks
4325 gallons per week will last 2 weeks

Baths

How the average person uses
water inside the home

Toilets Toilet leakage

Faucets

Dishwasher

Washing
machines

Showers

Problem 3 Queen Ann [3 points]

Summary
Queen Ann likes kittens, but she hates cats. She likes puppies, but she hates dogs. Queen Ann likes
spoons, but not forks or knives. She likes summer, but she doesn't like heat or sunshine. She hates
winter, but she likes freezing blizzards. Queen Ann likes pepper but not salt, and pizza but not pasta.

7.4

Without looking ahead, can you solve the riddle of what kinds of things Queen Ann likes or does
noft like?

**SPOILER ALERT **

Here is the solution to the riddle: Queen Ann only likes words that have double-letters, like her
name. Write a program that can tell if a word is something that Queen Ann likes.

Input
The first line of input specifies how many words the program must read. Each word fol-
lows on a separate line. Words are composed of upper case English letters.

7
KITTENS
FORKS
WINTER
RIDDLES
TELEVISION
BOOKS

COwWs

Output
For each input word, the program must print whether Queen Ann "likes" or "hates" the word.

likes KITTENS
hates FORKS
hates WINTER
likes RIDDLES
hates TELEVISION
likes BOOKS
hates COWS

IR A Scientific Notation [3 points]

Summary

Scientists and engineers often deal with very large and very small things such as redwood trees and atomic particles. Our data
values can similarly be very large or very small. In order to make it easier to read and write such numbers we use scienfific
notation.

Here's an example of a number written in scientific notation:

3.926 x 1074 (which is 39260)

Write a program that will read in a scientific number as a base number and a power of 10 and calculate the equivalent decimal
value.

Input /S 3
Each line contains a pair of numbers, B and E, where B is the base number and E is \)
the power of 10. B is greater than 1 but less than 10, and E is in the range of -10 to

10. The last line of input is two zeros.

.296 3
.8 -2
.8 2
.8678 1
0

ON B Wb

Output

For each line of input calculate the actual value rounding to 2 decimal places. Trailing
zeros to the right of the decimal point are required.

4296.00
0.04
180.00
28.68

TN Y | etter Tax [4 points]

Summary

Every year, local letter herders bring their flocks into town to
pay their letter tax. The tax rate is variable based on other taxes
paid by the herders. Don't get them started complaining about
the cryptographic tax code or the irrational number tax --
there's no end to it.

Here's how the tax works: the tax officer gives the letter herder
an integer number N. The letter herder must relinquish every
Nth letter to the tax, starting with the first letter and separating
out every Nth letter afterward.

Write a program to print the state of the flocks after the tax.

Input g 4 G_,D
The first line of input indicates the number of flocks the program will process. Every line @ @ 5 g% a
after that begins with an integer (the tax rate N) and then is followed by a single space ~* @ 4 ﬁ“o
and a sequence of English letters. These are the representations of the flocks before NS R\] CZo-U ? s

the tax. As you probably already know, the maximum size of a letter flock is 64.

3

4 xCORxXRECxT

5 agoodEbyelLDetteKrs

11 xTheQuickBrwownFoxJumpesOverTheLaxzyDog

Output

For each flock, the program must print the representation of the flock after the tax. The letters must be printed in the same order
as the input, but without the taxed letters. The program must also print (on the same line) the number of letters remaining in the
flock after the tax. The letters removed must start with the first letter in each flock and every Nth letter must be removed
afterward.

CORRECT 7
goodbyelLetters 14
TheQuickBrownFoxJumpsOverTheLazyDog 35

2 CUNN .Y Temperature Sensor [5 points]

Summary

Hewlett Packard Enterprise customers operate datacenters with large numbers of compute, storage, and networking devices
densely packed together. In these environments, the equipment could fail and possibly become damaged if allowed to overheat. So
these devices are equipped with one or more femperature sensors that a program can
read periodically to determine the device's temperature.

Temperature sensors must be calibrated because of slight variations in the
manufacturing of the sensor hardware. So at 20°C one sensor might report a T value of
248 and another sensor might report a T value of 253 for the same temperature. So
each sensor is calibrated at two temperatures, say 10°C and 20°C and the T values for
these two temperatures are recorded into the sensor. The tfemperature sensor readings
have a linear relationship to tfemperature. When a program reads a T value from the
sensor it must also read the calibration values. The program must calculate the
equation of the line through the two calibration points, and then using that equation it
can compute the temperature in Celsius for the current T value.

Write a program to calculate the temperature of a sensor using two calibration values

Slomus and the current sensor value.

e

Input
The first line of input indicates the number of sensors to read. Each line thereafter represents five integer values reported by a
single sensor, in this order: T, TO, T1, CO, C1; where

T is the current sensor's temperature value (T value)

TO is the sensor calibration value that corresponds to the 1st calibration temperature, CO
T1is the sensor calibration value that corresponds to the 2nd calibration temperature, C1

CO and C1 are the two calibration femperatures, given in units of degrees Celsius times eight
TO<T1,CO<C1

T may be less than TO, greater than T1, or anywhere in between.

3

450 350 550 160 240
270 300 600 150 250
640 280 480 170 220

Output

For each input line, the program must print the correct temperature in degrees Celsius. Remember that the CO and C1 values are
degrees Celsius times eight, so the program must divide by eight o arrive at the correct answer. Also keep in mind that the input
values are all integers, but in order fo calculate the correct answer the program may need to use floating point numbers. The
answers must be correct to within +/- 1 degree Celsius.

25
17.5
32.5

Ny A Share Your Letters [5 points]

Summary

You may have heard that you learned everything you needed to know in kindergarten. If that's true, then why are you still in
school? Does that seem right to you?

At CodeWars, we believe that you actually do learn quite a few useful things in school after kindergarten. For example, you
probably learned to write programs sometime after kindergarten. However, one of the useful lessons we all should have learned,
but we sometimes forget, is that it's nice to share your things with others. With that in mind, your task for this problem is to write a
program that can determine the set of letters shared in common among three words.

Input
The first line of input indicates the number of word triplets the program must read. Each line after contains three words, and we
use that term loosely, separated by one or more spaces. Don't assume there will only be one space between words.

3

TEST MEANT TIME
KINDERGARTEN CHICKENFEATHERS SPECIALITIES
ABSURD SUBORDINATE DUMBELLS3

Output
For each triplet, the program must print all the letters that are shared by all three words. If a letter appears multiple times in each
word, then it should also appear the corresponding number of times in the output. The letters must be printed in alphabetic order.

ET
AEEIT
BDSU

ZCUNE . S Parallelogram Words [5 points]

Summary

In the early days of computing we had dot matrix printers that would output everything in a fixed width font. Those of us who
were programming back then created all kinds of neat word art. Today you may have seen ASCII pictures or even ASCIl animations.
Let's create our own word art!

Input
The first line of input contains the number of words that follow. Each following line will contain one word up to 10 characters long.
All letters will be upper case.

3

TEST
SAMPLE
ART

Output

Print each given word horizontally once and multiple times vertically so that each letter in the horizontal word matches the
position of that letter in the vertical words.

The horizontal word will be in the middle of the output. The first vertical word uses the first letter of the horizontal word. The last
vertical word uses the last letter of the horizontal word.

Each parallelogram should be separated from the next by a blank line.

T
TE
TES
TEST
EST
ST

SA
SAM
SAMP
SAMPL
SAMPLE
AMPLE
MPLE
PLE
LE

AR
ART
RT

ZCUN - B Perfect Painting [6 points]

Summary
Consider a block of wood that has dimensions of L, W, D (all integers, in centimeters). Now paint that block on all faces and let it
dry. Finally, cut the block into 1 cm cubes. Let's say the block is:

e '"PERFECT"if the number of cubes with paint is identical to the number of cubes
without paint.

e "MORE than Perfect" if there are more painted cubes than not painted.

e "LESS than Perfect" if there are less painted cubes than not painted.

Write a program that, given the Length, Width, and Depth of a block, outputs the
classification of the block.

Input
Each line of input has three integers: the Length, Width and Depth of the block. The input
ends with three zeroes.

56 7
10 11 12
8 10 12
000

Output
The program must print the classification for each block. Capitalize only MORE, LESS, or PERFECT as appropriate.

A 5x6x7 block is MORE than Perfect.
A 10x11x12 block is LESS than Perfect.
A 8x10x12 block is PERFECT.

Problem 10 Tic-Tac-Toe [6 points]

Summary

Write a program that will read in a Tic-Tac-Toe board configuration and determine if there was a winner. In our data representation
the two players will be represented by X and O, respectively. An '=' indicates that the game ended before a move in this position
was necessary.

The game of tic-tac-toe begins with an empty game board that looks like this:

The second player will place an O into another board position. The players then alternate moves until one player manages to place
all X's or all O's along a row, column, or diagonal. Here are some example games. The first three board configurations show wins for
O, X, and X respectively. The fourth board configuration shows a draw.

=XX X0= XOX XOX
000 OX= =0X 00X
XOX XOX 0=X XXO

Input

Each line of input contains a complete board configuration of 9 characters. The first three characters represent the top row, the
next three characters represent the middle row, and the last three characters represent the bottom row. The end of the input will
consist of a board filled with all '=".

Note: The board configurations for this problem will never have a pair of winning directions.

=XX000X0X
X0=0X=X0X
XOX0O0XXX0

Output
The output should first print which player won followed by the board. The winning moves in the board should be marked by
replacing the X's or O's with '$".

Player O won.
=XX
$S8
XOX

Player X won.
$0=
0s=
X0$

There was a tie.
XOX
00X
XXO

2 CUN i [Location Awareness

[7 points]

Summary

Many modern computing devices have Location Awareness features. Phones, tracking systems, and self-
driving vehicles have the ability to determine their current location. Often this is accomplished using a
trilateration algorithm. If the device can receive signals from three sources whose locations are known, then
it can determine its location from that data.

For this problem, you will write a trilateration algorithm (explained below) for an autonomous robot using
signals from three towers positioned around a square arena. The arena is an integer grid with walls at the
four lines defined by x=100, y=100, x=-100, and y=-100. The robot may be positioned anywhere within the
arena. Tower 1is located at (x,y) position (0,100), tower 2 at (-<100,-100), and tower 3 at (100,-100).

Here's how the system works: the towers broadcast distinct signals that the robot can receive. The towers
are all powered by one common battery. When the robot is near a tower, the signal strength is high, but the
farther the robot is from the tower, the weaker the signal. The strength of a tower's signal is given by the
following equation:

s =P/ (d*d)

The variable P is the transmission power and d is the distance from the tower to the robot. When the
battery is fully charged the signal is very strong. But over time, as the battery's energy is used, the signal
power is reduced. So P is the same for each fower, but it changes over time. Also, the robot has no direct
way to measure P. So it is not possible to make an exact calculation for the distance to a tower using the
signal strength. You'll have to think of how to use all three signals to solve the problem. The only math you
need to know is that the distance between two points (x0y0) and (x1y1 is given by this equation:

d = sqrt((x0-x1)2 + (y0-y1)2)
Use the signals from the three towers to determine the robot's location on the grid.

Input

Each line of input has three floating-point numbers separated by one or more spaces. These numbers are the signal strengths

from towers 1, 2, and 3, in that order, for each location of the robot. The input ends with three zeros.

5.432 2.716 2.716

6.733 0.956 1.284

501.345 2.102 1.878

2.207 2.644 662.852

000

Output

For each input line, the program must print the exact integer x and y location of the robot.
00

21 35

-14 99

93 -90

Problem 12 Linear E [7 points]

Summary

Linear A is the name of a writing system used in ancient times on the island of Crete and the surrounding region. Although Linear
A was discovered in the late 1800's, the language has not yet been deciphered and remains a mystery. Interestingly, some of the
examples of Linear A were carved into round discs with the writing following a spiral path. Archaeologists do not yet know if the
writing should be read from center outward or from the edge inward. The spiral form of Linear A has inspired this CodeWars
problem.

Write a program to read a grid of English letters recorded in a spiral sequence
and print the text left-to-right. For this program you should assume the fext
begins at (or near) the center and spirals out in a clockwise direction.

Input

The first line of input indicates the number of rows and columns of the
letter grid. The grid itself begins on the next line. There will be a region
in the center of the grid with open spaces that will allow the program fo
determine where the spiral begins. There may also be blank spaces along
the edge of the grid. All spaces are important!

7 9
AreFunTo
sarsProR
tW be

ene la

vedoC ed
lmetatSmA
oSoTnuFdn

Output
The program must locate the starting position of the text and print the entire message in standard left-to-right sequence.

CodeWarsProblemStatementsAreFunToReadAndFunToSolve

Problem 13 Star Ca‘]‘alog [8 points]

Summary

Space: the final frontier. Imagine a future in which humans have learned to manipulate Higgs boson fields using jump field effect
(JFE) generators powered by nuclear fusion. Humans exploring the galaxy! It's an awesome idea, right? And someone has to write
the astronavigation software. It might as well be you. But there are a few things you'll need to know.

You have access to a catalog of star systems near our home star, Sol. For historical reasons, star coordinates are listed in the
catalog by right ascension (RA), declination (dec), and distance from Sol in light-years (LY). RA and dec are roughly analogous to
longitude and latitude. But we need to calculate distances between any two stars in the catalog. It would be much easier if our
stars were listed with Cartesian (x,y,z) coordinates. That conversion will require some attention to detail.

The celestial equivalent of latitude is declination and is measured in degrees North (positive numbers) or South (negative
numbers) of the Celestial Equator. One degree of declination is divided into 60 minutes. The celestial equivalent of longitude is
right ascension. Right ascension can be measured in degrees, but for historical reasons it is more common to measure it in time
Chours, minutes, seconds): the sky turns 360 degrees in 24 hours and therefore it must turn 15 degrees every hour; thus, 1 hour of
right ascension is equivalent to 15 degrees of (apparent) sky rotation. One hour of right ascension is divided into 60 minutes.

Mathematicians and physicists sometimes use a spherical coordinate system to describe locations in three-dimensional space
using two angles and a distance from a fixed origin. This is similar to astronomical coordinates, but in spherical coordinates the
polar angle is measured from the positive Z-axis (North).

IMPORTANT NOTES: The conversion process involves three steps:

(D Convert RA (hours+minutes) and dec (degrees+minutes) to real (floating-point) values in degrees. Pay close attention to the
different meanings of the word "minute" in RA and dec. Also be careful when converting negative declination values. For example,
the decimal equivalent of "-16 30" is -16.5 degrees.

Z
(2) Convert (RA,dec,LY) to spherical coordinates (r,0,¢) in radians.
x(r,8,09)
r = LY KH
O = (90 - dec) * T / 180 ro
@ =RA * T / 180 9 :
I~ 1
(3) Convert (p,0,p) to (x,y,2) using trigonometric transformations ! y
=r * sin(0) * cos(@) fP\\\ ‘

r* sin(0) * sin(@)
(0)

zZ =T * cos

Input

The first line of input indicates the number of stars in the catalog. Each star is described on its own line with the following fields:
the star name, RA hours, RA minutes, dec degrees, dec minutes, star classification, absolute magnitude, and the distance from Sol
in light-years. Each field is separated by one or more spaces. There may be up to one hundred stars in the catalog.

4

Sol 00 00.0 +00 00 G2v 4.83 0.00
Alpha-Centauri 14 39.6 -60 50 G2V+K1V+M5.5V 4.06 4.39
Sirius 06 45.1 -16 42 AlV+DA2 1.43 8.60
Teegarden's-star 02 53.0 +16 53 M6 17.22 12.51
Output

For each star, the program must print the star's name and (x,y,z) coordinates. Values must be accurate to within 1/10 of a light-year.

Sol x=0.00, y=0.00, z=0.00
Alpha-Centauri x=-1.64, y=-1.37, z=-3.83
Sirius x=-1.61, y=8.08, z=-2.47
Teegarden's-star x=8.72, y=8.20, z=3.63

il VA Variable Shift Encoding [9 points]

Summary

Codes and ciphers have been used since ancient times. In 405 BC, the
Greek general Lysander of Sparta was sent a coded message written
on the inside of a servant's belt. When Lysander wound the belt
around a wooden bafon the message was revealed: Persia was about
to go to war against him. He immediately set sail and defeated the
Persians.

For this program you'll use a cipher that shifts each symbol in a message to a new position in

the message. The number of places to shift depends on the previous symbol. The letter A has a shift

value of 1, B has a value of 2, etc. The maximum shift value for a letter is 5 and then the system repeats, so E is 5, F is 1,
Gis 2 and so on. A space character has a shift of 6. The cipher text is exactly the same length as the source text, so if a
letter is shifted past the end of the cipher text length, then the shift count wraps around to the beginning. To avoid colli-
sions, shift counting skips over characters that have already been placed into the cipher string. Finally, lines of fext are
broken into segments by periods, so each sentence is encoded separately from other sentences.

L L))

For example, consider the following source text: FIRST TEST. The F is assigned as the first character of the cipher text (there is no
previous character). Then the next character | is placed 1 position after F (because F has the shift value of 1), so the cipher text
becomes Fl-------- , where dashes represent characters in the cipher that haven't yet been filled. Then the third character R is
placed 4 positions after the | (because | has the shift value of 4), so the cipher text becomes Fl---R----. Then S is placed 3 positions
after R, resulting in FI---R--S-, and T is placed 4 positions after S, resulting in FI--TR--S-. The completed cipher text is

FIE TRSTST.

Write a program to decode cipher texts based on the encoding scheme described here.

Input

The first line of input indicates how many lines of cipher text the program must read. Each cipher will contain one or more sen-
tences that end with a period. The total line length (including periods) will be less than or equal to eighty characters. Sentences
will only contain upper-case English letters and spaces. Notice that all spaces are important and there may be two or more adja-
cent spaces in the cipher fext.

4

FIE TRSTST.

TT OTHA IENESIGT RNSLLSCI EE ELN.

WIDEONKE ETCA L . AI TIUSTTNF L FOO. NT HCCIOSEDUM WEA.
HNOERBTE EUS SCI A. RU IDIUIOLBSENDRCTO.

Output
The program must print the decoded text in the same line and sentence sequence of the input cipher text.

FIRST TEST.

THIS SENTENCE IS A LITTLE LONGER.

WE LIKE TO DANCE. IT IS A LOT OF FUN. COME DANCE WITH US.
HE CANT BE SERIOUS. DONT BE IRRIDICULOUS.

N [CJl Cube Rotation [9 points]

Summary

This year we're dealing with an actual cube, not cubicles. Our cube is a mini version of the famous Rubik's Cube. The original
puzzle was called the Magic Cube and was invented in 1974 by Hungarian professor Erno Rubik. We will work with a 2x2x2 cube
that uses the same colors as the original: Green, Red, Blue, Orange, Yellow, and White.

You will write a program that will scramble a solved cube. The moves used to scramble it will be the input fo your program. The
output will be the front face of the cube after each move.

The cube has six sides and here are the starting colors for each face of the cube:

Front: Green

Left: Orange
Right: Red
Back: Blue
Up: White
Down: Yellow

A move is considered a 90 degree clockwise rotation of one face of the cube.

Input

The input will consist of a series of move instructions to be performed on the solved cube. Each move is one 90 degree clockwise
rotation of one face of the cube: Front, Back, Left, Right, Up, and Down. There will be one move instruction per line. The end of the
input is a single period.

oo x™xwa

Output
The output will display the front face of the cube after each move. Starting with the initial configuration, print the move followed
by the front face of the cube. Use the starting letter of each color to represent a file.

Start D
G G R B
G G R B
U L
R R W B
G G W B
R U
RY R R
GY W B
R U
R B G W
G O W B

LN (oY Micecraft Gauntlet [10 points]

Summary

Each month, the gamer RatMaster creates a set of challenges for all Micecraft players. He calls the competition "The Gauntlet" and
it is a highly anticipated event. At 9:15 a.m. on a Saturday, he opens his arena with many different challenges. They range in
difficulty from simply "design a Muenster Tree" to "Avoid all RatTraps while collecting 100 BrieCoins." To add to the difficulty, the
Gauntlet closes at precisely 12:15 p.m. (One of RatMaster's ongoing criticisms is "How can anyone hope to complete all these
challenges in 3 hours!?")

The challenges are numbered starting from 1, and each is worth a certain number of points. They may be completed in any order,
and anyone who completes a challenge is awarded its points. Challenge 1is worth the least and the highest numbered problem is
worth the most, and each challenge's point value is never less than the previous one. For example, if there were 5 challenges, they
could be worth (12 458) or (1112 3) or (3 4 4 8 20). But each challenge's point value is kept secret until the end of the Gauntlet!
90 minutes into the competition, RatMaster posts the current standings without any competitor names, showing only their total
number of points and which problems each has solved. Everyone looks forward to this reveal, because with a little guesswork, they
can determine the point-values for most challenges and choose which remaining ones to attack o reach their best scores.

You must write a program to interpret the scoreboard and determine the number of points each challenge is worth.

Input
Each line includes the fotal points for one competitor, a space, then a list of 2-digit challenge numbers in increasing order
separated by spaces, ending with '00". The list ends with a single 0.

Example 1:
6 01 02 03 00
7 03 04 00
5 01 06 00
0

Example 2:

3 01 04 00

15 04 09 00
0

Example 3:

13 02 07 00

35 01 02 03 04 05 06 15 00
13 01 06 00

6 02 05 00

5 03 04 00

0

Output
The program must print the point value for each challenge that can be accurately determined, beginning with challenge 1. If a
value cannot be determined, it should print a question mark "?". There should be an entry (points or ?) from 1to the highest
challenge number found on the scoreboard.

Output 1:
123444
~—- Problem 5 must be worth 4 points since problems 4 and 6 are.

Output 2:
1?222727?27?27?13

Output 3:
2223411 11 11 11 11 11 11 11 11 11

ZECUN y Al All Your Nets Are Belong To Us [12 points]

Summary

In a computer network, the network switches need to be
configured for routing, access control, quality of service, and
many other operating parameters. For example, a company's
sales traffic might be given higher priority than, say, YouTube
videos. In the early days of the internet, network
administrators configured each switch one-by-one. Not only
was this boring, but as the internet grew and the rate of
change increased, configuring switches became a large
problem. Now, Hewlett Packard Enterprise and other
companies make network switches that can be configured
using software that manages the entire network. This
approach is called Software Defined Networking (SDN), CATS : ALL YOUR NEYS ARE BELONG
because you can't really sell a product with a feature called All TO US.

Your Nets Are Belong To Us*.

For this program you will simulate a simple SDN system. The program must connect network nodes using either single (low
bandwidth) or double Chigh bandwidth) connections.

Input
The first line of input is the number of rows and columns in the square input grid (maximum value is ten). Network nodes are
represented by single-digit numbers, while empty cells contain periods. Two examples are shown below.

5 7
3.4 .2 2 .4 .3 .4
2 3.2
2 1 . 2 2
1 ..
3. .2
Output

The program must connect all the nodes with straight lines that do not overlap other lines and print a diagram of the network
configuration. Connections may be single or double. For each node, the number of connections must match the integer value for
that node. Use - and = to draw single and double horizonftal lines, and use | and " to draw single and double vertical lines. The
network grids used in this contest only have one valid solufion.

-4 -3

I
o~

3 -4 -2 2

"o [. .
\ [. " 3 -
\ \
1 \

1

N
N — — — N .
N}

* For those too young to remember, "All Your Base Are Belong to Us" was a poorly translated line of dialog from a 1991 video game
called Zero Wing. The phrase became a popular internet meme in 2000 that took on a life of its own for a few years.

TN | 3 Hexagonally Amazing [12 points]

Summary

This problem is all code, no tinsel. Solve a maze set within an ASCII hexagon grid. Print the solution. That is all.

We'll represent hexagon maze intersections in ASCII text with the letters, the # symbol, the @ symbol, and the question mark.
Hexagons are connected by dashes and slashes, which represent paths through the maze. Every other line contains N-1 hexagons,
where N is the number of hexagons in the first line. For example, a fully connected ASCII three by five hexagon grid looks like this:

D Bt SRR S
NN NN
D Dt
/NN NN
D Bt SRR R

Input

The first line of input contains the number of rows and columns in the maze. The remaining lines are the maze itself. The maze
entfrance will be marked with an @ symbol, and the exit with a question mark. There will not be any loops in the maze; in other
words, there is never more than one path from any hexagon to any other hexagon. The line endings may (or may not) have extra
spaces, so don't depend on input lines being padded with spaces at the end.

D Bt TR S SR S
\ /NN /

N2 N N WY
e T e T e R

Output
The program must print the maze with the path highlighted using capital letters. The letters must mark the path in alphabetic
order, starting with A as the first hexagon after the @ symbol.

e e TR e TR e
\ /NN /
fo-—f-——k # F I---J

Problem 19 Craft Master [13 points]

Summary

Many computer games allow players to craft items in-game by combining raw materials using a crafting interface. The list of
materials used to craft an item is often called a recipe and the materials are called ingredients. Also, items that have been crafted
may sometimes be used as crafting ingredients for other items.

If all of this sounds like it could get confusing, well, yeah, it can. Players who want to craft the Uber Awesome Hammer of
Poundation may find themselves lost in the details of how many Iron Icicles they actually need to collect before the thing is finally
made. That's where you can help.

Write a program to print a list of all the raw materials required to craft an item.

Input

The input file will consist of two sections. The first line is the number of recipes, followed by one recipe per line. Each recipe
consists of an item name, the number of ingredients, followed by the number and name of each ingredient. Recipes will have two
to four ingredients. After the recipes, each line will contain the name of an item to be crafted. All names are in CamelCase, so there
are no spaces in the names. The input ends with the word GO.

9

UberHammerOfPoundation 3 1 UberHammerHead 1 UberShaft 1 UberHandle
UberShaft 3 3 IronIcicle 1 IridiumBar 1 MarkOfUber
UberHammerHead 3 1 MarkOfUber 4 IronIcicle 1 IridiumBall
UberShovelBlade 3 1 MarkOfUber 1 IridiumBar 4 IronIcicle
IronIcicle 2 5 IronLump 15 IceCrystal

MarkOfUber 3 7 PlatinumFlake 15 MagnesiumDust 1 IridiumNugget
IridiumBar 2 10 IridiumNugget 1 PlatinumFlake

IridiumBall 2 8 IridiumNugget 1 IronLump

UberHandle 3 1 RawhideStrap 1 BlackDye 1 RollDuctTape
UberHammerOfPoundation

UberShovelBlade

GO

Output

The program must print the name of each item the player wants fo craft enclosed in square brackets, followed by the name and
quantity of all raw materials. Any ingredient that has no recipe is a raw material. Each raw material used in the final item must be
printed exactly once with the total quantity required for the final item. The raw materials must be printed in alphabetic order.

[UberHammerOfPoundation]
BlackDye 1
IceCrystal 105
IridiumNugget 20
IronLump 36
MagnesiumDust 30
PlatinumFlake 15
RawhideStrap 1
RollDuctTape 1
[UberShovelBlade]
IceCrystal 60
IridiumNugget 11
IronLump 20
MagnesiumDust 15
PlatinumFlake 8

ZCully [0 § Enigami Machine [16 points]

Summary

During World War I, messages were encrypted with an Enigma Machine.

Through the dedicated effort of skilled cryptographers (and the predictability
of some encoded messages), the Enigma Machine was deciphered, helping
to end the war early.

Our rivals have created their own machine to encrypt their messages based on
the Enigma and called it Enigami. Enigami is not the ancient Japanese art of
sentence folding; it's just the word "imagine" spelled backward. We have

analyzed the machine and need you to decode their messages.

The Enigami Machine consists of a series of disks: The Input disk (ID), two
Translation disks (T1, T2), and a Reflector disk (RD). To encrypt one letter, the
user presses its key, causing an electrical signal to pass left to right through ID,

T1,and T2; the signal is reflected back to a different connector at RD, returning
through T2, T1, and ID, where the signal turns on a light for the letter
corresponding fo the encrypted value. After each letter, T1, T2 and RD rotate,
resulting in a different encryption circuit path for the next letter.

All disks are labeled sequentially A-Z. There are no spaces, digits, or punctuation. T1,
T2, and RD connect signals between letters in this way (spaces are added here only
for readability):

. ABCDE FGHIJ KLMNO PQRST UVWXYZ Disk Mapping Circuits

Input (left

)) TT T1 TL T2 T2 T2 RD
Tl (rJ..ght) : AMBID EXTRO USLYZ WVOPN KJHGEC left circuit right | left circuit right | RD circuit
T2 (right): UNCOP YRIGH TABLE SZXWV QMKJFD A A A = »
RD (left): NLKJI HPFED CBYAZ GXWVU TSRQMO B B B B<
(@ C C C
T1and T2 translate the signals left-to-right across the disk. RD connects lettersonthe D D Db
left side of the disk in pairs. ,E |E E }E
G G G Gq
Rotation H H H He
The ID does not move. The remaining disks all rotate. After a letter is encrypted, the j ; } }:_
disks rotate simultaneously: K K K K*J
e T1advances one position, always. L hv L oL L<
e T2 advances one position if T1starts at position A or O. ',\\IA ’,\VA r\,\f wf*
e RD advances one position if T2 starts at position A or O. (3 (3 S gé———
[=
. a\\J Q afa
Encryption Reff R R R
e Theinitial disk configuration is the Message Key for the encryption. With a 7\ S S S
Message Key of "COD", the initial disk positions are T1=C, T2=0, RD=D. S | 5 a a;\
e After encoding the first letter, T1rotates to "D". T2 doesn't rotate (stays "O". vl NV v v
RD rotates to "E". W w w i w
e After encoding the second letter, T1rotates to "E". T2 doesn't rotate (stays ;($)Y(5 X
"0"). RD rotates to "F". z z z Z—— |

o Neighboring disks connect to each other letter-to-letter.
e With the Message Key of "COD", the final encoding of the word "CAT" is "BWJ" (see figure on next page)

Decryption

Because the original and encrypted letters are the endpoints of a single circuit path, the encrypted letters can be decrypted with
exactly the same process. Starting with the Message Key, run the encrypted message through the Enigami Machine to find the
original message.

ZC il [0] Enigami Machine (continued) [16 points]

T T 72| 72 T T1 72| 72 TA|TL 72| 12

Your Task ID | left right | left right| RD ID | left right | left right RD ID | left right | left right | RD
5 H A c Cc 0 o) D A—»D D (o) 0 E A E E o o} F
Each day, our rivals gse a new 3-letter Daily Key, and 50 spealenn—p ¢ . S EAmE AR K
every message gets its own 3-letter Message Key. The C—HEXE | Q\ Q€-F CRFA\NFRQ QG ClG G- a | H
. . . . D F F R R GT D G G R R H D H R R I
complete encrypted communication consists of first eEflc\c | s —pH EfH W s s ef T[T sy s
the encrypted Message Key (using the Daily Key), then 4 LA R S = \L . 4 ERIEE BABA B
the encrypted message (using the Message Key). Here HEJ| J QvIVEK HEK[K J v V=gl HELL FVAIVEM
| K K wow L | L L W W M I MM wilw N
are the steps: Tl L fx x|m TIM M x X |IN J€N|N I x |x o
K M M Y Y N K N N Y Y o K 0 o Y Y P
L N N Z Z o} L o 0 Z Z P L P P z Z—pQ
i i M o O A A P M P P A A Q M Q| a A A R
D ?e'r Tt\e rotors to match the Daily Key (i.e. o R R b e R L 4 LI EXNN K.
SPY™). ofaaffc c[r ofR REc cfs offsfis fc cfrT
2) Hit the three characters of the Message Key o R = o E B B R B
ia " " H RET T HF[F QU ROV UNFI FRV REVIIVEFIF N
(i.e. "COD", and transmit these three 3 RS EANE 1 S EARE RANSE b shule b6 cdn
encrypted characters ("NEH". TRV VEIH H W TIW W llH | H X T—=x! |x | H / HlY
W oW | | X 1 | Z
3) Set the rotors fo match the Message Key o R e e R R A e K
" " W Y Y K K Z Wz z K K A W A A K K B
('CoD?. . xfz zjL L [|aA x AN A L Lef8Y xfe | s Lt fc
4) Encode and transmit the message. ("CAT YRiA Afm m|s Yis\s ‘_M /M c YQc/ cim mfD
4 B B N N Cc Z Cc Cc N N D z D D N N E

FOOD IS AWESOME!" becomes "BWJ YBYN =

QI BBUNUGO!") Encryption of CAT to BWJ

The final encrypted text that is sent looks like this: NEH BWJ YBYN QI BBUNUGO! Here, "NEH" is the encrypted Message Key
"COD" (encrypted using the Daily Key "SPY"), and the rest is the encrypted message (encrypted using the Message Key "COD").

Luckily, we receive transmissions from one foolish Enigami operator who is overcautious (and untrained in cryptography.) He types
the Message Key twice before encrypting the message. He thinks he's being helpful, because the recipients can validate the
Message Key since they'll receive it twice. His first two steps look like this:

1) Set rotors to match the Daily Key (i.e. "SPY").
2) Hit the three characters of Message Key (i.e. "COD", hit the same three characters and transmit these six encrypted
characters ("NEHNIW™).

So his encrypted text looks like this: NEHNIW BWJ YBYN QI BBUNUGO! Since we know his message begins with two copies of the
Message Key, you should be able fo decrypt it (perhaps with a search through all possible Daily Keys.) This will fell us the Daily
Key for any communications they may send that day! And of course, with a decrypted Message Key, you can also decrypt his
message!

Input
Each line includes the foolish communication from one day. The first 6 characters are the encrypted Message Key (repeated). Then
the encrypted message follows. Each line uses a different Daily Key. The last line is a single period.

NEHNIW BWJ YBYN QI BBUNUGO!
KSTFPD URT DFL ATRDNGPN QY TVDON?

Output
For each line, your program must determine (1) the Daily Key, (2) the Message Key, and (3) the decrypted message. Print all on the
same line as below. Since spaces, punctuation and digits cannot be encrypted, copy them directly fo the output message.

DK:SPY MK:COD MSG: CAT FOOD IS AWESOME!
DK:HEY MK:YOU MSG: DID YOU REMEMBER TO FLOSS?

Trivia: This "foolish operator" scenario was actually one of the original flaws in the use of the Enigma machine. Read the paragraphs about
September 1938 at https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma

Ui 4 Wl Astro-Navigation [18 points]

Summary

Space: the final frontier (again). Imagine a future in which humans have learned to manipulate Higgs boson fields using jump field
effect (JFE) generators powered by nuclear fusion. Humans exploring the galaxy! It's an awesome idea, right? And someone has fo
write the astronavigation software. It might as well be you. But there are a few things you'll need to know.

First, the distance a starship can jump depends on the size of the JFE and the starship mass. Each starship is rated for the
maximum distance it can jump, in light-years. Therefore long journeys
must often be broken into a sequence of smaller jumps. This brings us
to the second point: stars are not uniformly distributed in the galaxy.
There may be gaps between the origination and destination too large
for a ship's JFE to cross. In such cases, the optimal path may include
motion away from the destination to circumvent such gaps. Keep in
mind that the ship must refuel at each stop, so ending a jump in the
middle of empty space is sub-optimal.

Finally, you have access to a catalog of star systems with refueling
stations. For historical reasons, star coordinates are listed in the
catalog by right ascension (RA), declination (dec), and distance from
Sol in light-years (LY). These have been converted to (x,y,z) Cartesian
coordinates by other team members (see the Star Catalog problem).

The challenge here is to find the shortest flight plan for a specific starship to travel from the origination to the destination. You can
calculate the distance between two stars s1and s2 using this formula:
(x2-x1)2 + (z2-21)2]

d = sqrtl (y2-yl)? +

Then strap info your safety harness and get ready to jump!

Input

The input is arranged into two sections. The first line of section one indicates the number of stars in the catalog. Each star is
described on its own line with the following fields: the star name, classification, absolute magnitude, and x, y, and z coordinates in
light-years. Each field is separated by one or more spaces. There may be up to one hundred stars in the catalog. The first line of
section two indicates the number of journeys the program must navigate. Each journey is described by a separate line with the
origination, the destination, and the maximum number of light-years that the starship is capable of jumping before refueling.

10

Sol G2v 4.83 0.000 0.000 0.000
Alpha-Centauri G2V+K1V+M5.5V 4.06 -1.641 -1.372 -3.833
Luhman-16 L8+T1 14.20 -3.751 1.195 -5.285
Sirius A1V+DA2 1.43 -1.611 8.078 -2.471
Epsilon-Eridani K2v 6.18 6.201 8.296 -1.724
Groombridge-34 M1+M3 10.32 8.329 0.670 8.074
Epsilon-Indi K4V+T1+T6 6.89 5.660 -3.157 -9.897
Tau-Ceti G8V 5.68 10.283 5.021 -3.267
Teegarden's-star M6 17.22 8.719 8.202 3.633
Kapteyn's-Star M1 10.87 1.890 8.834 -9.039
3

Sol Alpha-Centauri 5

Teegarden's-star Sirius 5

Groombridge-34 Alpha-Centauri 9

Output

For each journey, the program must print several pieces of information. First, it must print the names of the origination and
destination. Then it must also print the straight-line distance from the origination to the destination and the number of jumps
needed for the journey. Next it must print each jump of the journey, giving the departure, arrival, and distance jumped. Finally, it
must print the fotal distance travelled. There must be a blank line between each journey. The program won't be judged on strict
output formatting, but it's best to follow the example output and keep the output data clear and easy to find. If the judges can't
find the data, they will fail the program. Distances must be accurate to within 1/10 of a light-year.

Uy & Wl Astro-Navigation (continued) [18 points]

If the program cannot find a valid path, it must print a message like, "no route from origination to destination".

JOURNEY from Sol to Alpha-Centauri, max jump: 5 LY
STRAIGHT LINE DISTANCE: 4.39 LY

number of jumps: 1

Sol to Alpha-Centauri; 4.39 LY

Total Distance: 4.39 LY

JOURNEY from Teegarden's-star to Sirius, max jump: 5 LY
STRAIGHT LINE DISTANCE: 12.00 LY
No route from Teegarden's-star to Sirius

JOURNEY from Groombridge-34 to Alpha-Centauri, max jump: 9 LY
STRAIGHT LINE DISTANCE: 15.66 LY

number of jumps: 5

Groombridge-34 to Teegarden's-star; 8.75 LY

Teegarden's-star to Epsilon-Eridani; 5.92 LY

Epsilon-Eridani to Sirius; 7.85 LY

Sirius to Luhman-16; 7.74 LY

Luhman-16 to Alpha-Centauri; 3.63 LY

Total Distance: 33.89 LY

	2016ProblemSetRC5
	2016InstructionsToTeams
	Prob00--Welcome
	Prob01--Greetings
	Prob02--RunningOutOfWater
	Prob03--QueenAnn
	Prob04--ScientificNotation
	Prob05--LetterTax
	Prob06--TemperatureSensor
	Prob07--ShareYourLetters
	Prob08--ParallelogramWords
	Prob09--PerfectPainting
	Prob10--TicTacToe
	Prob11--LocationAwareness
	Prob12--LinearE
	Prob13--StarCatalog
	Prob14--VariableShiftEncoding
	Prob15--CubeRotation
	Prob16--MicecraftGauntlet
	Prob17--AllYourNetsAreBelongToUs
	Prob18--HexagonallyAmazing
	Prob19--CraftMaster
	Prob20--Enigami
	Prob21--Astronavigation

	2016 Code Wars Eval
	2016 Code Wars Eval
	2016 Code Wars Eval

